

TEKNOR APEX MATERIALS SOLUTIONS: Heat Stabilized Creamid® PA66

Replaces high performance polymers by maintaining elongation and mechanical properties after thermal aging

Features & Benefits

- \rightarrow Fasteners pass insertion/extraction tests after 1,000 hours at 150° C.
- A Maintains both tensile strength and elongation after 1,000 hours of heat aging at 150°C.
- ➔ Superior toughness after thermal aging at 150°C
- Processable with excellent flow on standard injection molding equipment
- Sustainable, regrindable and recyclable alternative to non-recyclable offerings

<u>Markets</u>

Automotive Industrial

Applications

Removable, Semi-Permanent, Permanent Plastic Clips, Cable Ties, and Fasteners

High-Temp Sensors and Housings

High-Temp Hose Clamps

FEATURE	COMPETITIVE MATERIAL	C4HZA*9200 XRD2 1153678	C3HZA*9200 XRD3 1153682
Tensile Strength MPa	58	60	59
Initial Elongation %	26	34	25
Tensile Strength (1,000 hrs. @ 150°C)	58	62	58
% Elongation (1,000 hrs. @ 150°C)	5	24	21

Validated Manufacturing Scale-up

Tensile Strength and Elongation retention of Production scale manufactured lots were validated
Creamid® C4H7ZA*9200 XRD2 & XRD3 maintained over 30% absolute elongation after aging compared to Competitor "A", which averaged 12% Elongation with a large standard deviation of 9 (6,5,8, 27,15), compared to std. dev. of 0.9 and 1.2 for XRD2 & XRD3 respectively